Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(5): e2302634, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37992213

RESUMEN

Second near-infrared (NIR-II) mild photothermal therapy with higher tissue penetration depth and less damage to healthy tissues is emerging as an attractive antitumor modality, but its therapeutic efficiency is dramatically suppressed by the resistance of heat shock proteins (HSPs). As a widely explored photothermal agent, the application of polydopamine (PDA) in the NIR-II region is hampered by low photothermal conversion efficiency (PCE). Herein, its PCE in the NIR-II region is improved by developing novel hollow cavity CaO2 @PDA nanocomposites through chelation-induced diffusion of inner core Ca2+ to the shell PDA to facilitate multiple reflections of laser in the cavity. Upon pH-responsive degradation of CaO2 , its structure is transformed into a stacked "nano-mesh" with excellent light absorption and an enlarged effective irradiation area. Overloading of Ca2+ ions not only induces downregulation of HSPs but also enhances interference of light on membrane potential, which further aggravate mitochondrial dysfunction and reduce the thermotolerance of tumor cells, promoting efficient mild hyperthermia of PDA in the NIR-II region.


Asunto(s)
Hipertermia Inducida , Nanocompuestos , Nanopartículas , Polímeros , Indoles/farmacología , Indoles/química , Fototerapia , Nanocompuestos/uso terapéutico , Nanocompuestos/química , Concentración de Iones de Hidrógeno , Nanopartículas/química
2.
J Am Chem Soc ; 145(34): 18698-18704, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37581644

RESUMEN

As heavy-metal-based nanoscale metal-organic frameworks (nMOFs) are excellent radiosensitizers for radiotherapy via enhanced energy deposition and reactive oxygen species (ROS) generation, we hypothesize that nMOFs with covalently conjugated and X-ray triggerable prodrugs can harness the ROS for on-demand release of chemotherapeutics for chemoradiotherapy. Herein, we report the design of a novel nMOF, Hf-TP-SN, with an X-ray-triggerable 7-ethyl-10-hydroxycamptothecin (SN38) prodrug for synergistic radiotherapy and chemotherapy. Upon X-ray irradiation, electron-dense Hf12 secondary building units serve as radiosensitizers to enhance hydroxyl radical generation for the triggered release of SN38 via hydroxylation of the 3,5-dimethoxylbenzyl carbonate followed by 1,4-elimination, leading to 5-fold higher release of SN38 from Hf-TP-SN than its molecular counterpart. As a result, Hf-TP-SN plus radiation induces significant cytotoxicity to cancer cells and efficiently inhibits tumor growth in colon and breast cancer mouse models.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Profármacos , Fármacos Sensibilizantes a Radiaciones , Animales , Ratones , Estructuras Metalorgánicas/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico , Rayos X , Especies Reactivas de Oxígeno , Neoplasias/tratamiento farmacológico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Línea Celular Tumoral
3.
Small ; 19(52): e2305440, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635106

RESUMEN

Cancer cells alter mechanical tension in their cell membranes. New interventions to regulate cell membrane tension present a potential strategy for cancer therapy. Herein, the increase of cell membrane tension by cholesterol oxidase (COD) via cholesterol depletion in vitro and the design of a COD-functionalized nanoscale metal-organic framework, Hf-TBP/COD, for cholesterol depletion and mechanoregulation of tumors in vivo, are reported. COD is found to deplete cholesterol and disrupt the mechanical properties of lipid bilayers, leading to decreased cell proliferation, migration, and tolerance to oxidative stress. Hf-TBP/COD increases mechanical tension of plasma membranes and osmotic fragility of cancer cells, which induces influx of calcium ions, inhibits cell migration, increases rupturing propensity for effective caspase-1 mediated pyroptosis, and decreases tolerance to oxidative stress. In the tumor microenvironment, Hf-TBP/COD downregulates multiple immunosuppressive checkpoints to reinvigorate T cells and enhance T cell infiltration. Compared to Hf-TBP, Hf-TBP/COD improves anti-tumor immune response and tumor growth inhibition from 54.3% and 79.8% to 91.7% and 95% in a subcutaneous triple-negative breast cancer model and a colon cancer model, respectively.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Estructuras Metalorgánicas/farmacología , Colesterol Oxidasa , Piroptosis , Linfocitos T , Colesterol , Microambiente Tumoral
4.
Angew Chem Int Ed Engl ; 62(20): e202301866, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36935404

RESUMEN

Most tumor treatments will fail when ignoring competition and cooperation between each cancer cell and its microenvironment. Inspired by game theory, therapeutic agents can be introduced to compete for intracellular molecules to disrupt the cooperation between molecules and cells. Biomineralized oxidized (-)-epigallocatechin-3-o-gallate (EGCG)-molybdenum ion coordination nanoparticles were prepared for disrupting redox equilibria and simultaneously reacting with intracellular GSH in a Michael addition to form large aggregates that can mechanically disrupt endosomal and plasma membranes, stimulating pyroptosis and anti-tumor immunological responses for versatile inhibition of different types of tumors. This design disrupts the cooperation between molecules and between cancer and immune cells, achieving an optimal payoff in competition and cooperation in cancer therapy.


Asunto(s)
Nanopartículas , Piroptosis , Glutatión , Oxidación-Reducción , Inmunoterapia
5.
Adv Mater ; 35(21): e2206370, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36524978

RESUMEN

Radiotherapy (RT) uses ionizing radiation to eradicate localized tumors and, in rare cases, control tumors outside of the irradiated fields via stimulating an antitumor immune response (abscopal effect). However, the therapeutic effect of RT is often limited by inherent physiological barriers of the tumor microenvironment (TME), such as hypoxia, abnormal vasculature, dense extracellular matrix (ECM), and an immunosuppressive TME. Thus, it is critical to develop new RT strategies that can remodel the TME to overcome radio-resistance and immune suppression. In the past decade, high-Z-element nanoparticles have been developed to increase radiotherapeutic indices of localized tumors by reducing X-ray doses and side effects to normal tissues and enhance abscopal effects by activating the TME to elicit systemic antitumor immunity. In this review, the principles of RT and radiosensitization, the mechanisms of radio-resistance and immune suppression, and the use of various nanoparticles to sensitize RT and remodel TMEs for enhanced antitumor efficacy are discussed. The challenges in clinical translation of multifunctional TME-remodeling nanoradiosensitizers are also highlighted.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Nanopartículas/uso terapéutico , Terapia de Inmunosupresión
6.
Adv Mater ; 33(51): e2101572, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34611949

RESUMEN

Though numerous external-stimuli-triggered tumor therapies, including phototherapy, radiotherapy, and sonodynamic therapy have made great progress in cancer therapy, the low penetration depth of the laser, safety concerns of radiation, the therapeutic resistance, and the spatio-temporal constraints of the specific equipment restrict their convenient clinical applications. What is more, the inherent physiological barriers of the tumor microenvironment (TME), including hypoxia, heterogeneity, and high expression of antioxidant molecules also restrict the efficiency of tumor therapy. As a result, the development of nanoplatforms responsive to endogenous stimuli (such as glucose, acidic pH, cellular redox events, and etc.) has attracted great attention for starvation therapy, ion therapy, prodrug-mediated chemotherapy, or enzyme-catalyzed therapy. In addition, nanomedicines can be modified by some targeted units for precisely locating in subcellular organelles and boosting the destroying of tumor tissue, decreasing the dosage of nanoagents, reducing side effects, and enhancing the therapeutic efficiency. Herein, the properties of the TME, the advantages of endogenous stimuli, and the principles of subcellular-organelle-targeted strategies will be emphasized. Some necessary considerations for the exploitation of precision medicine and clinical translation of multifunctional nanomedicines in the future are also pointed out.


Asunto(s)
Microambiente Tumoral
7.
J Phys Chem Lett ; 12(40): 9982-9988, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34617750

RESUMEN

Uncovering the function of structured water in the interfacial capacitance at the molecular level is the basis for the development of the concept and model of the electric double layer; however, the limitation of the available technology makes this task difficult. Herein, using surface-enhanced infrared absorption spectroscopy combined with electrochemistry, we revealed the contribution of the cleavage of loosely bonded tetrahedral water to the enhancement of model membrane capacitance. Upon further combination with ionic perturbation, we found that the interface hydrogen bonding environment in the stern layer was greatly significant for the light-induced cleavage of tetrahedral water and thus the conversion of optical signals into electrical signals. Our work has taken an important step toward gaining experimental insight into the relationship between water structure and capacitance at the bioelectric interface.

8.
Adv Healthc Mater ; 10(23): e2101542, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643341

RESUMEN

The penetration depth of near-infrared laser has greatly restricted the development of most photothermal agents. Recently, photothermal agents in the second near-infrared (NIR-II) window have drawn great attention as they can overcome above barrier. Herein, a novel "all in one" NIR-II responsive nanoplatform (nickel selenide @polydopamine nanocomposites, NiSe@PDA NCs) based on in situ coating the polydopamine (PDA) on the surface of biomineralized nickel selenide nanoparticles (NiSe NPs) for dual-model imaging-guided photothermal therapy is reported. Under the illumination of NIR-II laser (1064 nm), the photothermal conversion efficiency of NiSe@PDA NCs can reach 48.4%, which is higher than that of single NiSe NPs due to the enhanced molar extinction coefficient. In addition, because of the paramagnetic effect of NiSe NPs, the constructed NiSe@PDA NCs can be acted as T1 contrast agent for magnetic resonance imaging (MRI). Most importantly, the MRI contrast effect is enhanced with the coating of PDA layer due to the loose structure of PDA. Ultimately, both in vitro and in vivo experiments demonstrate that the developed NCs can achieve efficient MRI-guided photothermal therapy for treating malignant tumor. Therefore, the designed NiSe@PDA NCs with excellent features show great potential for clinical MRI-guided cancer therapy.


Asunto(s)
Nanocompuestos , Nanopartículas , Indoles , Imagen por Resonancia Magnética , Níquel , Fototerapia , Terapia Fototérmica , Polímeros
9.
J Am Chem Soc ; 142(52): 21751-21757, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33337859

RESUMEN

Although more attention has been attracted to the therapy based on reactive oxygen species (ROS) for tumor therapy in recent years, such as photodynamic therapy and chemodynamic therapy, the limited ROS production rate leads to their poor treatment effect owing to the relatively low content of O2 and H2O2 in tumor microenvironments, confined light penetration depth, strict Fenton reaction conditions (pH 3-4), and so on. Therefore, it is urgent to explore the new agents with highly efficient ROS generation capacity. Herein, we first prepared phospholipid coated Na2S2O8 nanoparticles (PNSO NPs) as new ROS generation agents for in situ generating Na+ and S2O82- through gradual degradation, which can then be changed to toxic •SO4- (a novel reported ROS) and •OH regardless of the amount of H2O2 and pH value in the tumor microenvironment (TME). As the generation of a large amount of Na+, PNSO NPs can bypass the ion transport rules of cells through endocytosis to deliver large amounts of Na+ into the cells, resulting in a surge of osmolarity and rapid cell rupture and lysis. Osmotic pressure induced by PNSO NPs will further lead to an unusual manner of cell death: caspase-1-related pyroptosis. Moreover, all of above effects will cause high immunogenic cell death, regulate the immunosuppressed TME, and then activate systemic antitumor immune responses to combat tumor metastasis and recurrence. We believe PNSO NPs will be new and potential ROS generation agents, and this work will broaden the thinking of the exploring of new antitumor nanodrugs.


Asunto(s)
Inmunoterapia/métodos , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sodio/química , Compuestos de Sodio/farmacología , Sulfatos/química , Sulfatos/farmacología , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Concentración Osmolar , Fosfolípidos/química , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
10.
Biomaterials ; 251: 120075, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32388168

RESUMEN

Poor chemical stability, low tumor enrichment, and weak therapeutic effects of commonly used organic sonosensitizers significantly hinder further clinical applications of sonodynamic therapy (SDT). Encouraged by the principles of semiconductor catalysis and defect chemistry, we obtained a defect-rich gadolinium (Gd) doped zinc oxide (D-ZnOx:Gd) semiconductor sonosensitizer by defect engineering for efficient deep tumor sonodynamic eradication. The abundant oxygen defect can promote the separation of the electron (e-) and hole (h+) of D-ZnOx:Gd, which significantly enhances the sonodynamic effect. In addition, D-ZnOx:Gd is more easier to adsorb water and oxygen molecules due to its rich oxygen-deficient, greatly enhancing the capacities of ROS production. A significantly higher sonodynamic ROS generation abilities and anti-deep tumor efficiency against breast cancer are obtained in such defect-rich ZnO nanobullets. This work not only broadens the applications of ZnO semiconductor nanoagent in the field of nanomedicine, but also reveals the mechanism of how the oxygen deficiency enhanced the sonodynamic efficacy of zinc oxide, providing a new application of defect engineering in the field of cancer therapy.

11.
Angew Chem Int Ed Engl ; 59(24): 9491-9497, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32100926

RESUMEN

Chaos and the natural evolution of tumor systems can lead to the failure of tumor therapies. Herein, we demonstrate that iridium oxide nanoparticles (IrOx ) possess acid-activated oxidase and peroxidase-like functions and wide pH-dependent catalase-like properties. The integration of glucose oxidase (GOD) unlocked the oxidase and peroxidase activities of IrOx by the production of gluconic acid from glucose by GOD catalysis in cancer cells, and the produced H2 O2 was converted into O2 to compensate its consumption in GOD catalysis owing to the catalase-like function of the nanozyme, thus resulting in the continual consumption of glucose and the self-supply of substrates to generate superoxide anion and hydroxyl radical. Moreover, IrOx can constantly consume glutathione (GSH) by self-cyclic valence alternation of IrIV and IrIII . These cascade reactions lead to a "butterfly effect" of initial starvation therapy and the subsequent pressure of multiple reactive oxygen species (ROS) to completely break the self-adaption of cancer cells.


Asunto(s)
Materiales Biomiméticos/farmacología , Evolución Molecular , Iridio/química , Nanopartículas/química , Neoplasias/genética , Peroxidasa/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Biocatálisis , Línea Celular Tumoral , Glucosa Oxidasa/metabolismo , Glutatión/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo
12.
Nanoscale Adv ; 2(4): 1395-1409, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36132317

RESUMEN

Cancer has become one of the primary threats to human beings, and traditional therapies (including surgery, chemotherapy and radiotherapy) show limited therapeutic efficacy due to the complexity of tumor biology. Furthermore, determining how to utilize the differences between the tumor microenvironment (TME) and healthy tissues and exploring new nanoplatforms that can realize early diagnosis and effective and non-toxic therapy are challenges in cancer theranostics. Numerous researchers have designed multifunctional nanomaterials and investigated their personalized therapy and regulation abilities toward TME, including oxygen generation, glutathione consumption and the production of reactive oxygen species and multi-model imaging effects. This review will introduce the latest progress in the design of multi-functional nanomedicines for the regulation of TME and their theranostics, and it will provide a critical angle for the future development of nanomedicine.

13.
J Mater Chem B ; 7(40): 6172-6180, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31559402

RESUMEN

As the semisynthetic derivative and active metabolite of the effective anti-malarial drug artemisinin, dihydroartemisinin (DHA) has been investigated as an emerging therapeutic agent for tumor treatment based on the cytotoxicity of free-radicals originating from interactions with ferrous ions. Meanwhile, simultaneously delivering DHA and iron ions to tumors for selectively killing cancer cells is still a great challenge in DHA tumor therapy. Herein, we develop a facile yet efficient strategy based on iron-coordinated hollow polydopamine nanospheres to load DHA (DHA@HPDA-Fe). The as-prepared nanoagent is biodegradable and exhibits controllable release of DHA and Fe ions in tumor microenvironments, resulting in ferrous ion-enhanced production of cytotoxic reactive oxygen species (ROS) by DHA and thus effectively killing the tumor cells. In vivo therapy experiments indicated that the anti-tumor efficacy of DHA@HPDA-Fe was about 3.05 times greater than that of free DHA, and the tumor inhibition ratio was 88.7% compared with the control group, accompanied by negligible side effects, indicating that the proposed nanomedicine platform is promising for anti-tumor applications.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Sistemas de Liberación de Medicamentos , Indoles/química , Hierro/química , Nanosferas/química , Polímeros/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Antimaláricos/química , Apoptosis , Artemisininas/química , Proliferación Celular , Femenino , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nano Lett ; 19(8): 5093-5101, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31242732

RESUMEN

Due to the limitation of inorganic nanomaterials in present clinical applications induced by their inherent nonbiodegradability and latent long-term side effects, we successfully prepared double switch degradable and clearable trinickel monophosphide porous hollow nanospheres (NiP PHNPs) modified with bovine serum albumin (BSA). Attributed to their acidic and oxidative double switch degradation capacities, NiP PHNPs can be effectively excreted from mice without long-term toxicity. Moreover, because of the paramagnetic and high molar extinction coefficient property resulting from the strong absorption in the second near-infrared light (NIR II) biowindow, NiP PHNPs have potential to be used for photoacoustic imaging (PAI) and T1-weighted magnetic resonance imaging (MRI) guided photothermal ablation of tumors in the NIR II biowindow. Specifically, it is interesting that the hollow structure and acidic degradation property enable NiP PHNPs to act as intelligent drug carriers with an on-demand release ability. These findings highlight the great potential of NiP PHNPs in the cancer theranostics field and inspire us to further broaden the bioapplications of transition metal phosphides.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Nanosferas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fosfinas/uso terapéutico , Animales , Células HeLa , Humanos , Hipertermia Inducida , Imagen por Resonancia Magnética , Ratones , Imagen Multimodal , Nanosferas/ultraestructura , Técnicas Fotoacústicas , Fototerapia , Porosidad , Nanomedicina Teranóstica
15.
Nanoscale ; 11(20): 9906-9911, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31089657

RESUMEN

At present, increasing attention is being paid to photothermal therapy corresponding to the second near infrared (NIR-II) range (1000-1700 nanometers); however, its biomedical applications related to carbon-based nanomaterials (CNMs) have always been limited by the large-scale fabrication of excellent diagnostic probes with a suitable size and optical absorption cross-section. Herein, we successfully prepared Bi@C nanoparticles with a suitable size and high output (3.14 g per patch) through a one-pot hydrothermal method. By combining Bi with carbon, the optical absorption in the NIR-II range was enhanced compared to that for single carbon; moreover, Bi@C could no longer be easily oxidized due to the protection of outer C compared with individual Bi. Furthermore, because of the high atomic number of Bi (Z = 83), the Bi@C nanoparticles exhibited computed imaging contrast properties. According to the in vitro and in vivo experiments, the Bi@C nanoparticles could ablate cancer cells under illumination with a 1064 nm laser with deeper penetration and an appropriate permissible exposure (MPE) to the laser (1 W cm-2), showing excellent performance for the diagnosis and treatment of tumors. This study provides a simple method to synthesize metal-carbon nanocomposites to enhance the NIR-II optical absorption efficiency for effective deep-seated tumor photothermal therapy and will further broaden the applications of CNMs.


Asunto(s)
Bismuto/química , Carbono/química , Nanopartículas/química , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células HeLa , Humanos , Hipotermia Inducida/métodos , Rayos Infrarrojos , Ratones , Nanopartículas/toxicidad , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fototerapia , Tomografía Computarizada por Rayos X , Trasplante Heterólogo
16.
Angew Chem Int Ed Engl ; 58(29): 9846-9850, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31077533

RESUMEN

The generation of singlet oxygen (1 O2 ) during photodynamic therapy is limited by the precise cooperation of light, photosensitizer, and oxygen, and the therapeutic efficiency is restricted by the elevated glutathione (GSH) levels in cancer cells. Herein, we report that an ultrathin two-dimensional metal-organic framework of Cu-TCPP nanosheets (TCPP=tetrakis(4-carboxyphenyl)porphyrin) can selectively generate 1 O2 in a tumor microenvironment. This process is based on the peroxidation of the TCPP ligand by acidic H2 O2 followed by reduction to peroxyl radicals under the action of the peroxidase-like nanosheets and Cu2+ , and their spontaneous recombination reaction by the Russell mechanism. In addition, the nanosheets can also deplete GSH. Consequently, the Cu-TCPP nanosheets can selectively destroy tumor cells with high efficiency, constituting an attractive way to overcome current limitations of photodynamic therapy.


Asunto(s)
Glutatión/metabolismo , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Oxígeno Singlete/química , Hipoxia de la Célula , Humanos , Oxígeno , Microambiente Tumoral
17.
Angew Chem Int Ed Engl ; 58(8): 2407-2412, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30600877

RESUMEN

The stringent reaction conditions for an effective Fenton reaction (pH range of 3-4) hinders its application in cancer therapy. Therefore, how to improve the efficiency of the Fenton reaction in a tumor site has been the main obstacle in chemodynamic therapy (CDT). Herein, we report biocompatible one-dimensional (1D) ferrous phosphide nanorods (FP NRs) with ultrasound (US)- and photothermal (PT)-enhanced Fenton properties and excellent photothermal conversion efficiency (56.6 %) in the NIR II window, showing synergistic therapeutic properties. Additionally, the high photothermal conversion efficiency and excellent traverse relaxivity (277.79 mm-1 s-1 ) of the FP NRs means they are excellent photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) agents. This is the first report on exploiting the response of metallic phosphides to NIR II laser (1064 nm) and ultrasound to improve the CDT effect with a high therapeutic effect and PA/MR imaging.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Ferrosos/uso terapéutico , Peróxido de Hidrógeno/uso terapéutico , Hierro/uso terapéutico , Fosfinas/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Compuestos Ferrosos/química , Células HeLa , Humanos , Peróxido de Hidrógeno/química , Rayos Infrarrojos , Hierro/química , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Fosfinas/química , Técnicas Fotoacústicas , Nanomedicina Teranóstica , Ultrasonografía , Neoplasias del Cuello Uterino/diagnóstico por imagen
18.
ACS Biomater Sci Eng ; 5(2): 1016-1022, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33405792

RESUMEN

The concentration of intracellular reactive oxygen species directly determines the effect of photodynamic therapy. Reducing intracellular glutathione (GSH) content can increase reactive oxygen species (ROS) level. Therefore, it is extremely important to construct a nanoplatform that can promote photodynamic therapy by consuming GSH. In this study, we synthesized Cu-typtone complex nanoparticles (Cu-Try NPs) by a simple green method and demonstrated their ability to consume GSH to increase intracellular ROS for the first time. Photosensitizer methylene blue was loaded onto Cu-Try NPs (Cu-Try/MB NPs) for enhanced photodynamic therapy. Studies in vitro and in vivo illustrated that enhanced photodynamic therapy based on Cu-Try/MB NPs can kill cancer cells effectively.

19.
ACS Biomater Sci Eng ; 5(9): 4435-4441, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-33438409

RESUMEN

In this article, a type of small-sized metal organic framework (MOF), MIL-101(Fe), as an intelligent delivery system was fabricated to load chemotherapy drug dihydroartemisinin (DHA) and photosensitizer methylene blue (MB). In addition, the Fe ions releasedfrom the MOFs in the tumor environment not only enhanced the curative effect of DHA but also catalyzed H2O2 to release O2, which further improved the photodynamic therapeutic effect of the nanocomposites. The nanocomposites can serve as a T2 magnetic resonance imaging contrast agent at the same time. The polylactic acid (PLA) and polyethylene glycol (PEG) were used to modify the surface of MOFs-MB-DHA to acquire the excellent controllable release of drugs and good biocompatibility to decrease the side effects for normal cells. All the results show remarkably increase of the therapeutic efficiency by synergistic chemo-photodynamic therapy. Thus, a smart multifunctional drug delivery system for diagnosis and therapy based on MOFs-MB-DHA@PLA@PEG was constructed for not only real-time imaging but also chemotherapy and photodynamic synergetic therapy to kill the tumor selectively, showing great potential for conquering the existing barrier in chemo-photodynamic synergetic therapy.

20.
Nanoscale Adv ; 1(11): 4268-4276, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134396

RESUMEN

Characterization of the dynamic changes of the basic surface properties of nanoparticles is of great significance to reveal the interaction mechanism between nanoparticles and cells; however, it is often neglected due to the limitations of existing analytical methods. This knowledge has been renewed by using surface enhanced infrared absorption spectroscopy (SEIRAS) to study the interaction between PEG-CuS nanoparticles and living cells attached to rGO-Au modified Au films. Based on the difference spectra of cell membranes and the associated water, we clearly revealed that Cu2+ ions produced by the degradation of PEG-CuS can coordinate with PEG, thus changing the interaction between nanoparticles and cells including how and how many nanoparticles enter the cells and the sequential photothermal effect, which breaks through the limitations of the present analytical methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...